1. The graph of y = f(x) is shown on both grids below.

(a) On the grid above, sketch the graph of y = f(-x) replection in y axis

(b) On this grid, sketch the graph of y = -f(x) + 3(c)

(d)

y

f(x)

4

4

6

8

x

replection in x Oxis and translation by vector (3)

(1)

2. The graph of y = f(x) is shown on the grid below.

Imide brackets > do opposite of what is expected on x-axis

(a) On the grid above, sketch the graph of y = f(x - 2)

(1)

On the grid, graph $\bf A$ has been reflected to give graph $\bf B$.

The equation of graph **A** is y = g(x)

(b) Write down the equation of graph ${\bf B}.$

3. The graph of the curve C with equation y = f(x) is transformed to give the graph of the curve S with equation y = f(-x) - 3

The point on C with coordinates (7, 2) is mapped to the point Q on S.

Find the coordinates of *Q*.

$$y = f(x)$$
 \rightarrow $(7,2)$.

 $y = f(-x) \rightarrow (-7,2)$

(nultiply the x-coordinate by $-\frac{1}{4}$
 $y = f(-x) - 3 \rightarrow (-7,-1)$

Subtract 3 from the y-coordinate -7 , -1

(Total for Question is 2 marks)

The graph of y = f(x) is shown on the grid.

(a) On the grid, draw the graph with equation
$$y = f(x+1) - 3$$

translation by vector $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$

Point 4(2.1) lies on the graph of $y = f(y)$

Point A(-2, 1) lies on the graph of y = f(x).

When the graph of y = f(x) is transformed to the graph with equation y = f(-x), point A is mapped to point B.

(b) Write down the coordinates of point B.

$$f(-x)$$
 is a reflection in the y axis

5. The graph of the curve with equation y = f(x) is shown on the grid below.

(a) On the grid above, sketch the graph of the curve with equation y = f(-x)

(2)

The curve C with equation $y = 5 + 2x - x^2$ is transformed by a translation to give the curve S such that the point (1, 6) on C is mapped to the point (4, 6) on S.

(b) Find an equation for S.

$$y = 5 + 2(x - 3) - (x - 3)^2$$

(2)

(Total for Question

is 4 marks)

6. Here is a graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$

(a) Using this graph, find estimates of all four solutions of

 $\sin x^{\circ} = 0.6 \quad \text{for } 0 \leqslant x \leqslant 720$

X=36, X=144, X=396, X=504

So next two Solutions are at 2=360+36=396° 12=360+144=504°

The graph of $y = \sin x^{\circ}$ is reflected in the *x*-axis.

(b) Write down an equation of the reflected graph.

 $y = -\sin x^{\circ}$

Here is a graph of y = f(x)

(c) On the grid, draw the graph of y = f(x - 2)

> translation by vector